Skip to main content

Dark matter is not necessarily a particle. It can be a quasiparticle or a soliton in the gravity field.

"Dark matter influences cosmic behavior through gravitational interactions, leading to phenomena like “dark stars,” which may explode similarly to supernovae. The exploration of potential dark matter particles, such as WIMPs and axions, is critical to understanding these celestial events. Credit: SciTechDaily.com" (ScitechDaily, Exploding “Dark Stars” – Unveiling the Explosive Secrets of Dark Matter)


In the WIMP (Weakly Interacting Massive Particle) model, the WIMP is the dark matter particle. The mystery is how those particles can be invisible. And then another mystery is: are all those particles similar, or are they some kind of quasiparticles? 

One thing that can help us to understand the dark matter's role is the energy flow. Energy flows always to a lower energy area. Galaxies are at higher energy levels than their environment. We can think that every single galaxy is on the table. And energy flows away from them. That makes it hard to see material that is between galaxies. If energy flows in a dark matter direction, we cannot see that thing without reflection. 

In some models, dark matter is a particle that spins very fast. That means radiation can travel past this object. In that model, a particle forms a standing wave that closes reflection in that quantum field which looks like the Earth's magnetic field. The other model is that this particle transforms radiation into a string that is hard to see. 

There are books written on dark matter. Cosmologists made lots of theories about this invisible and still dominant gravity effect. Some of those theories require that the Higgs field exists. The hole in Higgs field forms when some high-.energy beam with the same frequency as the Higgs field impacts the universe. 

Then that energy beam pushes the Higgs field away like water pushes air when a submarine's hull breaks. That interaction would be possible if there were other universes. The high-energy beam pushes the theoretical Higgs field away its way. Then that fallen channel moves Higgs field back to that channel. 


"Image of a galaxy showing, on the left, its stellar component, and on the right (in negative), the dark matter present in its halo. Credit: Gabriel Pérez Díaz, SMM (IAC) / The EAGLE team" (ScitechDaily, Cosmic Shadows: Astronomers Unveil Dark Matter’s Role in Galaxy Evolution) 

Even if researchers cannot see dark matter straight. They can see the gravitational shadow of that thing. 

At the beginning of the dark matter research, researchers thought that dark matter was evenly distributed. But then they found the galaxy there was no dark matter. That galaxy proved that dark matter can form similar structures as regular matter. 

The term: dark matter stars means an object that is too light being a black hole, but invisible. Those things may be hypothetical planet-mass-back holes. The key element in this model is this: if the planet's nucleus is colder than 3 kelvin radiation the outside energy pushes the planet into a black hole. And in some models, small-mass black holes are the thing called dark matter. 

The term dark matter means the gravity effect whose origin is unknown. This means that dark matter can be real particles, quasiparticles, or maybe dark matter is some kind of channel through the Higgs field. It's also possible that dark matter is a material. Whose energy level is lower than three-kelvin radiation. 

When we think about dark matter's existence, we must understand that also the quasiparticles or gravitational solitons can make the gravitational effect that origin is unknown. Or it's invisible to us. There are two types of dark matter in the original dark matter model.  But there could be many more dark matter types than those two types. 


1) Cold dark matter.

2) Hot dark matter.


That means: there could be many types of material things in the universe that can form the dark gravitational effect. In some models, the Bose-Einstein condensate or atoms with minimum energy levels can transfer similar effects on protons and neutrons. In Bose-Einstein condensate the atom's size is bigger than in the normal case. Maybe there is a model that proton's quantum field can expand. 

In this model the proton's and neutron's expanded quantum field allows photons can push quarks away from their route. In that model, dark matter exists in the intergalactic space. 

Outside the galaxies, quantum fields are very weak if we compare them with quantum fields in galaxies. They cannot push protons the same way as quantum fields can push them inside galaxies. And maybe that thing allows the photons to travel through the atom's nucleus and protons and neutrons. 

In the quasiparticle model, there is an electron hole. That is so deep that multiple electrons can start to obit it. Or maybe some missing quark makes a similar hole or pothole as an electron leaves in an electron orbiter. But there are no observations or evidence about gluon- or quark holes.  In the quasiparticle hypothesis, the dark matter is like super-exciton. The black hole is like an electron-hole. But it makes a hole in a different wavelength field than an electron. The quasiparticles can form a group that interacts like a planet. The mystery of dark matter is not solved. That means we will return to that topic quite soon. 


https://scitechdaily.com/cosmic-shadows-astronomers-unveil-dark-matters-role-in-galaxy-evolution/

https://scitechdaily.com/exploding-dark-stars-unveiling-the-explosive-secrets-of-dark-matter/

https://scitechdaily.com/resolving-the-hubble-tension-webbs-precise-measurements-illuminate-the-universes-expansion-mystery/


https://en.wikipedia.org/wiki/Axion

https://en.wikipedia.org/wiki/Dark_energy

https://en.wikipedia.org/wiki/Dark_matter

https://en.wikipedia.org/wiki/Soliton

https://en.wikipedia.org/wiki/Weakly_interacting_massive_particle





Comments

Popular posts from this blog

The hydrogen-burning supernovas are interesting models.

"Researchers discovered a significant magnesium anomaly in a meteorite’s dust particle, challenging current astrophysical models and suggesting new insights into hydrogen-burning supernovas. (Artist’s concept.)Credit: SciTechDaily.com" (ScitechDaily, Rare Dust Particle From Ancient Extraterrestrial Meteorite Challenges Astrophysical Models) If the star is too heavy when its fusion reaction starts, it can detonate just at that moment, when its fusion starts. If the collapsing nebula is heavy enough, it can form a black hole straight from the nebula. But if the nebula's gravity is too heavy to  form  the blue giant or too  small  it can collapse  straight  into a black hole . If  the forming star is a little bit larger than the blue supergiants. It can explode immediately when the fusion starts.    The theory of hydrogen-burning supernovas consists  model  of the giant stars that explode immediately after their fusion starts. When the...

The ancient galaxy mirrors the Milky Way.

"This image shows the galaxy REBELS-25 as seen by the Atacama Large Millimeter/submillimeter Array (ALMA), overlaid on an infrared image of other stars and galaxies. The infrared image was taken by ESO’s Visible and Infrared Survey Telescope for Astronomy (VISTA). In a recent study, researchers found evidence that REBELS-25 is a strongly rotating disc galaxy existing only 700 million years after the Big Bang. This makes it the most distant and earliest known Milky Way-like galaxy found to date. Credit: ALMA (ESO/NAOJ/NRAO)/L. Rowland et al./ESO/J. Dunlop et al. Ack.: CASU, CALET" (ScitechDaily, Astronomers Baffled by Ancient Galaxy That Mirrors Modern Milky Way) Researchers found the youngest Milky Way-type galaxy. The distance to the galaxy is enormous. And the light that comes from that galaxy named REBELS-25 comes from the Universe that is only 700 million years old. The distance to that galaxy is enormous about 236 billion light years. And that means it's a very dista...

Transcendence, or the ability to transcendent thinking may grow in teen's brains.

   "New research has discovered that transcendent thinking, which involves analyzing the broader implications of situations, can foster brain growth in adolescents. This form of thinking enhances brain network coordination, impacting developmental milestones and future life satisfaction. The study emphasizes the need for education that encourages deep, reflective thought, underscoring the critical role of adolescents in their own brain development". (ScitechDaily, Scientists Discover That “Transcendent” Thinking May Grow Teens’ Brains) "Scientists at  USC Rossier School of Education’s Center for Affective Neuroscience, Development, Learning and Education (CANDLE) have discovered that adolescents who grapple with the bigger meaning of social situations experience greater brain growth, which predicts stronger identity development and life satisfaction years later". (ScitechDaily, Scientists Discover That “Transcendent” Thinking May Grow Teens’ Brains) The transcendenc...