Skip to main content

How to measure dark energy?

 How to measure dark energy? 


In some models, the cosmic voids are forming dark energy. In that model, the quantum fields fall into that void and impact together in them. The cosmic void acts like a vacuum bomb. 


This model means that there is a standing wave in the middle of those voids where quantum fields reflect. So what separates this thing from the gravitation? That is the wavelength of traveling electromagnetic fields and gravitation is one energy field. 

In some other versions of this model, the cosmic voids increase the speed of material vaporization. In that process, the material turns into electromagnetic wave movement. When that wave movement hits to void's edge. This impact causes energy interaction called dark energy. But this is only a hypothesis. 

So we must remember one thing. There must be many radiation wavelengths that are forming entireties called dark energy. Dark energy consists of multiple radiation wavelengths that are not visible to us or our sensors. In some models, dark energy is electromagnetic radiation that has a shorter wavelength than gamma radiation. And other side of the electromagnetic spectrum outside gravitational waves is another dark energy area. 



"Using simulated data, astronomers have depicted the sky through gravitational waves, revealing the need for space observatories to detect binary systems. Future projects like LISA aim to uncover thousands of these hard-to-detect systems, marking a paradigm shift in space observation. (Artist’s illustration — see video below for simulation.)" (ScitechDaily.com/NASA’s Cosmic Vision: Simulating Our Galaxy Through Gravitational Waves)



"Matter distribution in a cubic section of the universe. The blue fiber structures represent the matter (primarily dark matter) and the empty regions in between represent the cosmic voids".(Wikipedia, Void(astronomy)



The thing that could help to understand dark energy is to find out how it interacts with the environment. Does it interact straight with particles? Or does it interact with the particle's environment? 


When researchers want to measure how much dark energy a system contains they must know how much visible energy is in the system. Then they must find some point that they use as the benchmark. After that researchers must calculate how that anomaly behaves if it contains only visible energy. Then they must just reduce those visible energy values from the values, that sensors give. And then we must strip dark energy out of those values. 

Theoretically, that thing might seem very easy, but the problem is that dark- and visible energy affect the system together. The accuracy of the models depends on the knowledge of the system. Researchers should separate the values that visible energy gives. From the values that the dark energy and visible energy give together. And the problem is that nobody measured dark energy. Accurate calculations require the knowledge of the power of dark energy. 

But there is no quantum-scale observation from dark energy. Dark energy is visible only in large-scale systems. There is a vision that dark energy is energy that travels out from material because of cosmic expansion. In some other visions, at least part of dark energy is energy. That comes out from black holes. In that model, there are many types of dark energy. And electromagnetic spectrum continues far away from gamma- and from other side radio waves. So is there an endless number of wavelengths in the electromagnetic spectrum? 


When we are talking about visible energy, that thing contains many types of radiation. Gravitational waves, X, and gamma-rays are also "visible energy". And maybe we should stop thinking that things like dark energy or gravitational waves have only one wavelength. There could be many wavelengths that form gravitational waves and dark energy. So that means those energy waves can affect different points in the particles and their environment. 

That means there might be two effects that we call as gravitational effect. The first interacts straight with the particle. The second interacts with the particle through its environment. In the first version, the superstring that forms the particle's spinning shell cuts the gravitational superstring. In the second model quantum fields that travel in some kind of electromagnetic vacuum pull particles in the gravitational center. 


In some visions the black holes or their singularity spins very fast. And that interaction drives quantum fields into its poles. Then quantum field travels to that extremely dense object's poles plus the other quantum fields through the event horizon and those quantum fields pull other particles with them. 

The wavelength of the gravitational waves is thousands or even millions of kilometers. There is the possibility that gravitational interaction happens when a gravitational wave travels through the spinning particles. The spinning part is the whisk-looking superstring structure, and the gravitational wave is like a string that travels through this structure. When the superstring hits the gravitational waves it harvests energy in it. 

So if we think that gravitational waves have multiple wavelengths there is the possibility that some gravitational waves are forming an electromagnetic vacuum that causes the effect, where falling quantum fields try to fill that bubble. And those electromagnetic fields or quantum fields are pulling particles with them. 

We can see short-wave gamma- and long-wave radio waves. The gravitational waves can be thousands or even millions of kilometers long. And that makes it hard to detect them. In some models, all black holes send gravitational waves with their unique wavelengths. 

That depends on the event horizon's size. In that model, the dense energy between the transition disk and the event horizon is the point, where gravitational waves are leaving. In that case, the dense energy interacts with quantum fields sending radiation that we know as gravitational waves. 


https://scitechdaily.com/cambridge-researchers-discover-new-way-to-measure-dark-energy/


https://scitechdaily.com/nasas-cosmic-vision-simulating-our-galaxy-through-gravitational-waves/


Comments

Popular posts from this blog

Transcendence, or the ability to transcendent thinking may grow in teen's brains.

   "New research has discovered that transcendent thinking, which involves analyzing the broader implications of situations, can foster brain growth in adolescents. This form of thinking enhances brain network coordination, impacting developmental milestones and future life satisfaction. The study emphasizes the need for education that encourages deep, reflective thought, underscoring the critical role of adolescents in their own brain development". (ScitechDaily, Scientists Discover That “Transcendent” Thinking May Grow Teens’ Brains) "Scientists at  USC Rossier School of Education’s Center for Affective Neuroscience, Development, Learning and Education (CANDLE) have discovered that adolescents who grapple with the bigger meaning of social situations experience greater brain growth, which predicts stronger identity development and life satisfaction years later". (ScitechDaily, Scientists Discover That “Transcendent” Thinking May Grow Teens’ Brains) The transcendenc

Higgs field and the speed of light

Dimensions are energy levels. When the difference between energy levels between two objects rises too high, they lose their ability to interact with each other. And the problem with crossing the speed of light is that researchers cannot pump enough energy that the particle can jump to the fourth dimension.  When a particle closes speed of light its size turns smaller, and finally, a particle cannot turn smaller anymore. And that thing is the cosmic speed limit. The light cone is the model that for crossing the speed of light the particle must push its structure through itself. And that is difficult because the particle's density turns so high that it cannot push its superstrings through that structure.  When we think that the Higgs field pulls energy through particles we might understand why only photons and other massless particles can reach the speed of light. The energy that travels through particles impacts the Higgs field. And that's why it will deny crossing the speed of

The Dark Matter as a cosmological discrepancy

The problem with cosmology and dark matter is that cosmologists cannot connect dark matter with standard cosmological models. Without knowledge about details of some parts of the system that makes impossible to make complete models of the system.  The fact is that we know only 5% of the universe. We cannot make it complete. And working models about the system where 95% remains unknown. so we know only a little part of the system called universe.  In some models, dark energy is connected with dark matter. The source of dark energy would be dark matter. But confirming this theory is impossible if we cannot see dark matter or dark energy.  In many models, the WIMPs (Weakly interacting massive particles are the thing. That makes the mysterious gravitational effect called dark matter. The form of WIMP is a mystery. There are also models where WIMPs are like gravitational skyrmions.  Or they could be overweight gravitons. But the problem is that nobody saw graviton yet.  There is the possibi